
Accurate Quality Control Charts via Sparsity
Reconstruction For Multimode Process Monitoring

Wafa Bougheloum
Laboratory of Automatics and Signals of Annaba (LASA)

Faculty of Engineering
University Badji-Mokhtar of Annaba

P.O. Box. 12, Annaba, 23000, Algeria
Email: bougheloumwafa@gmail.com

Messaoud Ramdani
Department of Electronics

Faculty of Engineering
University Badji-Mokhtar of Annaba

P.O. Box. 12, Annaba, 23000, Algeria
Email: messaoud.ramdani@univ-annaba.org

Abstract—Conventional process monitoring often assumes that
process data follow a Gaussian distribution with linear cor-
relation. However, this type of constraint can not be satisfied
in practice because many industrial processes are nonlinear in
nature. This paper proposes an improved multivariate statis-
tical process monitoring scheme based on the Stacked Sparse
Autoencoder (SSAE) to detect and reconstruct the potential
invalid/missing data. The Squared Prediction Error (SPE) index
is used for novelty detection with an adaptive non-parametric
confidence limit derived from the kernel density estimate (KDE)
to reduce false alarms. Based on the reconstruction principle, an
improved sensor validity index (SVI) is proposed to identify the
faulty/missing data. The experimental results using both synthetic
and actual data from a drinking-water treatment plant, reveal
the effectiveness of the proposed scheme and show its capacity
to detect and identify sensor failures.

Index Terms—Process monitoring, Multivariate Statistical Pro-
cess Control, Data Reconstruction, Sparsity reconstruction.

I. INTRODUCTION

Data mining can extract hidden and useful information from
large databases, where potential relationships can be used for
automated anomaly detection and related problem root cause
(RC) localization. In fact, statistical process control (SPC)
charts allow the visualization of process evolution and the
detection of the abnormal changes. However, most traditional
SPC such as PCA works optimally only in the situation where
the correlations are linear, which is most of the time an ap-
proximation. Recently, deep learning has been very successful
in many applications. Which is an unsupervised algorithm able
to find a better representation with a deep learning architecture
[1]. As one of deep learning methods, we propose the stacked
sparse autoencoder (SSAE) [2] to reconstruct the input data.
After reconstruction, the novelty detection is carried out by
using the Q-statistics [3] in conjunction with an adaptive non-
parametric confidence limit derived from the kernel density
estimate (KDE) in order to reduce the false alarm detection
rates. After the detection of an abnormal event, we are in the
obligation to know which sensor is defective using basically
the contribution plots or the reconstruction principle.
This paper focuses on the use of Stacked Sparse Autoencoder
(SSAE), which is trained to reconstruct the input data collected
from the normal operating mode.

The rest of this paper is organized as follows: Section II
outlines the Sparsity Reconstruction based Process Monitoring
(SRPM) strategy. In section III, experimental results are car-
ried out using both synthetic and actual data from a drinking-
water treatment plant to show the effectiveness of the proposed
schemes.

II. SPARSITY RECONSTRUCTION BASED PROCESS
MONITORING (SRPM)

Deep Learning recently achieved outstanding performance
for a variety of tasks. It has been applied successively in
the field of image processing and visual analysis, but its
application in the field of process control is still rare. The
deep neural network models are used as feature extraction
tools which contain a hidden layer called bottleneck layer.
First, the input vector Xi = {1, 2, 3, ..., N} is transformed
into a hidden part represented by the function hi, as follows:

hi = f(xi) = sigm(W1x+ b1) (1)

Where W1 and b1 are respectively the weight and the bias
between the input layer and the hidden part and sigm(x) is a
sigmoid function.
In the decoding layer, hi is mapped to the output denoted by
x̂. Where we use the activation function shown as follows:

x̂i = g(hi) = sigm(W2h+ b2) (2)

Where W2 and b2 are respectively the weight and the bias be-
tween the hidden part and the output layer (x̂). The bottleneck
network whose training criterion involves a sparsity penalty
in the botleneck layer is called Stacked Sparse Autoencoder
(SSAE). The power of this network is to predict its output
(estimation of the input) as close as possible to its input, this
by optimizing the cost function defined by:

J =
1

N

N∑
i=1

(
1

2
‖x̂i − xi‖ 2

)
+
λ

2

N∑
i=1

‖Wi‖2 + β

m∑
j=1

KL(ρ‖ ρ̂j) (3)

Where m is the number of the hidden node. λ and β are the
coefficient that determine the weight decay and the sparsity
penalty terms, respectively.
In the equation (3), the first term represents the reconstruction
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error, the second is the regularization term and the last is Spar-
sity Penalty term, where KL(ρ‖ ρ̂i) is the Kullback-Leibler
divergence, it is used to calculate the difference between ρ and
ρ̂i, where ρ and ρ̂i are the constraint used during learning.
The back propagation algorithm is used to minimize the cost
function and to find the appropriate parameters W1, W2, b1,
b2.

A. Anomaly Detection

Anomaly detection is the process of identifying unexpected
items or events in data sets, which differ from the norm. The
common measure is the squared prediction error (SPE):

Q = SPE =

N∑
i=1

(xi − x̂i)2 (4)

Where N is the number of samples. In this study, we pro-
pose an adaptive confidence limit using a fuzzy clustering
algorithm, namely the FCM [4] to divide the normal data of
the whole operating regime into smaller number of possibly
simpler local operating regimes.

1) Parametric χ2 Distribution (δ2α): The system is consid-
ered in its normal operating conditions if SPE ≤ δ2α. On the
other hand, if SPE > δ2α , the system is considered defective,
where δ2α is specified for the SPE control limit [5], which can
be calculated using a weighted χ2 distribution:

δ= gχ2
h,α g = v

2m h = 2m2

v
(5)

Where m and v are the estimated mean and variance of SPE,
respectively.

2) Adaptive confidence limit based on Kernel Density
Estimation (KDE) (AUCLKDE): Kernel density estimation
(KDE) is a very powerful tool for the nonparametric
estimation of the probability density function of a random
variable at any point of the support. Given a sample matrix
with n variables and m samples, the KDE of the density
function f(x) at any point x is defined as follows:

f(x) =
1

mh

n∑
j=1

K

(
x− xj
h

)
(6)

Where h is the bandwidth parameter and K is a Kernel
function that integrates to one and has zero mean.
Many classification algorithms for different problems have
been proposed. Fuzzy c-means (FCM) is a grouping method
that allows a data item to belong to two or more clusters. It is
based on the minimization of the following objective function:

Jm =

N∑
i=1

C∑
j=1

umij ‖xi − cj‖
2 (7)

Where m is is the fuzziness parameter, uij is the degree of
membership of xi in the cluster j and xi is the ith of the
measured data and cj is the center of the cluster.
The clustering algorithm that has been used in this article is
the Gustafson-Kessel (GK) [6].

B. Fault Identification

1) Contribution Plots: There are several methods of faults
identification. For this purpose, contribution plots can be used.
The contribution of variable j to the Q statistic is calculated
as follows:

CQijk = e2ijk (8)

Where e = (xi − x̂i).

2) Sensor Validity Index (SVI): To be able to reconstruct
the faulty data, it is necessary to determine the fault in a
unique way (figure 1). The approach consists in predicting the

Fig. 1: Reconstruction Principle

measurement x̂j of the process, by replacing the jth process
variable by the predicted one and repeating the operation
until convergence of the algorithm as follow:

x̃i = ξTj G(F (xj)) (9)

Where x̃i = (x1, x2, ..., x̂j , ..., xm), ξTj is the jth column
of the identity matrix. The Sensor Validity Index (SVI)
is the measure of sensor performance where standard
range should exist regardless of the number of principal
components of the disturbances or faults [7], it is defined
as follows: η2j (k) =

SPEj(k)
SPE(k) Where SPE is the quadratic

global prediction error computed before reconstruction and
SPEj is the jth quadratic prediction error computed after
reconstruction [8]. The validity index of a faulty sensor must
converge towards zero.

III. EXPERIMENTAL RESULTS

A. Synthetic data

We use dataset [9] containing three variables where t is
uniformly distributed in the interval [−1, 1]; εi denotes the
Gaussian white noises with zero means and standard deviation
of 0.01 and 1000 samples collected to build SSAE model.

x1 = t2 + 0.3 sin(2πt) + ε1
x2 = t+ ε2
x3 = t3 + t+ 1 + ε3

(10)

After creating the model, we check the evolution of SPE under
normal conditions, where statistical and adaptive threshold is
calculated. The result is shown in figures 2. For the clarity
of the results we will use a window from 0 to 250 samples.
We simulate a fault in one of the sensors and we notice the
evolution of SPE with the two thresholds as it is illustrated
in figure 3. By examining the figures in normal and faulty
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Fig. 2: SPE: data in normal state (statistical and adaptive
threshold)
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Fig. 3: SPE: data in faulty state (statistical and adaptive
threshold)

state, we can see a false alarm in our data caused generally
by outlier measures. The SSAE model is able to detect the
fault, the detection was at 150 sample. Also, we can identify
the faulty sensor via the reconstruction principle Fig 4, where
the corresponding SVI tends to zero, as shown in 5.

B. Case study: Drinking Water Treatment Plant

Traditional drinking water treatment treating surface water
usually include four important processes: flocculation, sedi-
mentation, filtration and disinfection, as shown in figure 6.
Adding chemicals to water may be the most important process
in the surface treatment plant. The main function of the unit is
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Fig. 4: Fault isolation using reconstruction principle (fault in
the 3rd sensor)
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Fig. 5: Fault identification using Sensor Validity Index (SVI)
(Fault in the 3rd sensor)

chemical coagulation, in which chemicals, usually aluminum
or iron salts, are added into the water for the purpose of
producing flocs of colloidal particles and deposition of other
contaminants. In our study, the model inputs consist of raw
water parameters, while the model output is the best dose
of coagulant to achieve the required quality of treated water.
This section focuses on the development of self-coagulation
control based on the total water parameters to calculate the
required dose. The plant we studied is the drinking water
treatment plant of Oued Athmania, located at the northwest of
the Constantine Province, in the Mila City in East of Algeria.
It is responsible for the distribution of drinking water to many
citizens at and around Constantine (Algeria) [10].
The data consists of raw water and treated water parameters:
Turbidity, Temperature, PH and O2, so in total we have
eight parameters implying that we have 8 sensors to monitor.
The measurements are collected from a data acquisition unit

Fig. 6: The typical drinking water processing units
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(SCADA system) covering a period of 356 days, including
different periods. This dataset is used to build the SSAE model.
The result obtained for SPE in normal conditions with the two
types of thresholds is illustrated in figure 7. For the clarity of
the results we will use a window from 0 to 200 samples. We
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Fig. 7: SPE evolution for the the healthy state.

inject a fault in the dissolved oxygen O2 of the treated water
and we observe the evolution of the SPE, which is shown in
figure 8. It is clear that the SSAE model is able to detect and
isolate the fault, the detection starts from the 120th sample
and the faulty sensor was indicated as the 8th sensor which
is the O2 of the treated water (TW), 9.
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Fig. 8: SPE evolution in faulty state
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Fig. 9: SVI’s Raw Water (RW) and Treated Water (TW)
sensors

IV. CONCLUSIONS

In this paper, an accurate quality control charts strategy
based on Sparsity Reconstruction is proposed for multimode
process monitoring. A Stacked Sparse Autoencoder (SSAE)
was build and used to reconstruct the input data. The novelty
detection of upsets or abnormal events is carried out by
an adaptive upper control limit, which is well suited for
non Gaussian processes. To identify the defective sensor, an
improved Sensor Validy Index (SVI) based on the reconstruc-
tion principle is proposed. Experimental results obtained on
synthetic and actual data from a drinking water treatment
plant reveal the effectiveness of the proposed system and
demonstrate its ability to detect and identify sensor failures.
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